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Abstract. For each prime power q -7 (mod 12), there is a triple system of order 
q whose automorphism group is transitive on unordered pairs. The object of this 
paper is to study these systems. This is done by analyzing how pairs of elements are 
linked. The linkage of a and b consists of a triple (a, b, c) and of some cycles 
in which adjacent pairs of elements form triples alternately with a and with b. Be- 
cause of the transitivity, the lengths of the cycles will be independent of the choice of 
a and b. 

Using a computer, the linkage between two elements was determined for each q 
< 1000. Some curious facts concerning the lengths of the cycles were uncovered; for 

example, the number of cycles of length greater than 4 is even. The systems of prime 
order p < 1000 were found to have no proper subsystems of order greater than 3. In 
the remaining case, q = 343, there are subsystems of orders 7 and 49, and all subsystems 
of the same order are isomorphic. For no q with 7 < q < 1000 is the automorph- 
ism group doubly transitive. 

Finally, some general results are proved. The cycles of lengths 4 and 6 are de- 

termined. Using this result, it is shown that there can be no subsystem of order 7 or 

9, except for the subsystems of order 7 when q is a power of 7. Hence, by a theo- 
rem of Marshall Hall, the automorphism group cannot be doubly transitive, except 
possibly when q is a power of 7. (Added August 1974. In a postscript, it is sh-own 
that the automorphism group is not doubly transitive in this case either.) 

0. Doubly Transitive Triple Systems. A (Steiner) triple system on a given set of 
elements is a set of triples of these elements such that each pair of elements is included 
in one and only one triple. Triple systems are discussed, for example, in Hall [5]. If 
n is a positive integer, then there is a triple system on n elements if and only if 
n -1, 3 (mod 6). The system is unique for n < 9, but for larger n, this is no longer 
the case. 

Of especial interest are triple systems with a high degree of symmetry. The only 
systems which are known to have a doubly transitive automorphism group are the pro- 
jective spaces over the 2-element field and the affine spaces over the 3-element field, 
where the triples in each case are the lines of the geometry. These yield triple systems 
with 2r - 1 and 3r elements. Another description of these systems is obtained by 
starting with the field of 2r elements with 0 deleted, or with the field of 3r ele- 
ments, and letting (x, y, z) form a triple whenever x + y + z = 0. A paper by Hall 
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[4] raises the question whether there are any other triple systems with doubly transi- 
tive automorphism groups, and makes a contribution to the solution by showing that 
these are the only systems satisfying a stronger condition. 

The automorphisms of the system with 3r elements clearly include the linear 
transformations xU = ax + b with a * 0. These transformations are sufficient to 
guarantee the double transitivity. In this section, we shall show that there is no other 
triple system based on a field and having all these automorphisms. Indeed, we find that 
there is no other system having even the automorphisms x" = + x + b. 

It will be convenient to discuss first cyclic triple systems, that is, triple systems 
having an automorphism which permutes the elements cyclically. We may use as ele- 
ments the residue classes mod n, and assume that xa = x + 1 is an automorphism. 
Associated with a triple (x, y, z) is the difference triangle (u, v, w) with u = y - x, 
v = z - y, w = x - z. Here u + v + w = 0, but u 0, v L 0, w # 0. Only the 
cyclic order of u, v, w is important. 

We may represent the system geometrically by placing the element h at e2lihln 

A difference triangle can be visualized as a triangle inscribed in the unit circle, its ver- 
tices being elements of the triple. However, the lengths of the sides are measured by 
the arcs cut off. Rotating the triangle through the angle 2ir/n corresponds to the 
automorphism xU = x + 1. If the triangle is scalene, it will produce n different 
triples by rotation. It is not permissible for the triangle to be isosceles, since it would 
produce two different triples with a pair in common. However, if n is a multiple of 
3, we could use an equilateral triangle with side n/3. It will produce only n/3 triples 
by rotation. 

The various difference triangles used must be such that the sides and their nega- 
tives exhaust the nonzero residue classes mod n. If n = 6k + 1, there must be k 
scalene triangles, whereas if n = 6k + 3, there must be k scalene triangles and an 
equilateral triangle. 

The difference triangle (-w, - v, - u) is equivalent to (u, v, w). But the re- 
versed triangle (w, v, u) or (-u, - v, - w) is not equivalent to this, and is indeed 

inconsistent with it, unless the triangle is equilateral. 
More generally, consider triple systems on an Abelian group of order n which 

are invariant under addition of constants. These reduce to cyclic triple systems if the 
group is cyclic. Similar considerations hold in general, except that there may be more 
than one equilateral triangle. The side of such a triangle will satisfy the equation 3u = 

0, that is, must be a group element of order 3. If a triple system associated with an 
Abelian group also has the automorphism xa = - x, then with every difference triangle 
we also have the reversed triangle, hence all difference triangles are equilateral. 

We now apply this conclusion to triple systems on a field having the automor- 
phisms xa = + x + b. The argument will be based solely on the fact that all difference 
triangles are equilateral. If u is the side of such a triangle, then 3u = 0 but u # 0. 
It follows that 3 = 0. Thus p = 3 and so q = 3'. Also, in any triple (x, y, z), we 
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would have 

x + y + z = x + (x + u) + (x + 2u) = 0, 

which leads back to the triple system of order 3' already discussed. 

1. Systems Transitive on Unordered Pairs. The group of automorphisms x' = 

ax + b with a $ 0 discussed in Section 0 has a subgroup of index 2, where a is restricted 
to be a square. The subgroup takes 0 and 1 into any two elements differing by a 
nonzero square. Now if - 1 is not a square, then these squares and their negatives 
exhaust the field, except for 0. Hence the subgroup will be transitive on unordered 
pairs. 

In this section, we shall determine the triple systems on a field which admit this 
group. Since -1 is not a square, we have p 3 (mod 4) and r odd, or, what is 
equivalent, q 3 (mod 4). For a triple system, we must have q 1, 3 (mod 6). The 
case q 3 (mod 6) arises only when q = 3r. In this case, there must be at least one 
equilateral difference triangle. Multiplication by all nonzero squares then yields 
(q - 1)/2 equilateral difference triangles, so all difference triangles are equilateral. As 
shown at the end of Section 0, this leads to the doubly transitive system of order 3' 
discussed there. Thus we need consider only the case q -1 (mod 6). Then we must 
have q _ 7 (mod 12), which is equivalent to p 7 (mod 12) and r odd. 

Let q = 6k + 1. There must be k scalene difference triangles. We may assume 
that at least two sides of each triangle are squares; otherwise, we reverse the cyclic 
order of the sides and change their signs. Multiplying the sides of any triangle by the 
3k nonzero squares, we obtain each of the triangles three times, with their sides per- 
muted cyclically. Hence all of the sides must be squares. Let the triangle containing 
1 be (1, u, v). Multiplying by u-1 gives the triangle (u-1,1, vu- 1) = 

(1, vu-1, u-1). Hence vu- 1 = u and u' =v, and so v-u2 and u =V2. It 

follows that u3 = V3 = 1. 

Since p 1 (mod 6), the equation x3 = 1 has three integer solutions, that is, 
three solutions in the p-element subfield. If co is either of the solutions other than 1, 
then we may take u = co and v = Cd2. All difference triangles are obtained from the 
basic triangle (1, co, Co2) by multiplying by nonzero squares. This does yield a triple 
system with the prescribed automorphisms. The two choices for co lead to two iso- 
morphic copies of the triple system. One differs from the other by reversing the 

cyclic order of the differences, which corresponds to changing the signs of all the ele- 
ments. Except for a few remarks about triple systems in general and about the systems 
considered in Section 0, the rest of this paper will be devoted to these triple systems. 

It will be convenient to introduce the character x(a), which has the value 1, 0, 
or - 1 according as a is a nonzero square, 0, or a nonsquare. If q = p, then X(a) 
is the Legendre symbol (a/p). More generally, if q = pr with r odd, and a is an 
integer, then X(a) = (a/p). Since p 1 (mod 6) in the cases considered, we have 

X(- 3) = 1. Furthermore, we assumed that X(- 1) = - 1, hence also X(3) = - 1. 
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The third element of a triple (x, y, z) is determined from x and y by the 
formula 

z = y + (y - x)o if X(y - x)=l. 

In case X(Y - x) -1, then we have x(x - y) = 1, hence the same formula may be 
used with x and y interchanged. 

When r > 1, we may also consider the field of q = pr elements as an r-dimen- 
sional affine space over the p-element field. Since co is an integer, the preceding 
paragraph shows that the three elements of any triple are collinear. Every linear sub- 
space will therefore define a subsystem of the given triple system. 

In the computer programs discussed in Section 2, I chose the numerically smaller 
value of o. For theoretical purposes, a different choice may be better. Since co = 

(o2)2 and ? + 1 = - c 2, we have x(co) = 1 and X(w + 1) =- 1. These do 
not furnish any distinction between the two choices for, co. But the latter shows 
that X(O2 _ 1) = - x(o - 1). In other words, for one choice of co we have 

X(o - 1) = 1, for the other we have X(w - 1) =- 1. We may suppose that X is 
chosen so that X(o - 1) = 1. This choice of X may also be characterized by assum- 
ing that (1, c, co2) is a triple as well as a difference triangle. Indeed, the triple 
(1, W, Cv2) corresponds to the difference triangle (co - 1, Cv2 _ co, 1 - 02), which 
is obtained from the basic difference triangle (1, co, 0o2) by multiplying by co - 1. 
Furthermore, since (co - 1) (c + 2) = 2 + co - 2 =-3, it follows that X(c + 2) 
= 1. 

The prescribed linear automorphisms x' = ax + b ?With X(a) = 1 form a 
group of order q(q - 1)/2. The r automorphisms of the field of q = pr elements 
are also automorphisms of the triple system which we constructed. We see that a field 
automorphism commutes with the group of linear automorphisms. Hence, together, 
the prescribed linear automorphisms and the field automorphisms generate a group of 
order rq(q - 1)/2. For q = 7, the automorphism group is in fact larger, and is 
doubly transitive. 

Using a theorem of Marshall Hall, we show in Sections 7-9 that the automorph- 
ism group is not doubly transitive in any other case, except possibly when q = 7r. 

(These sections are independent of Sections 3-6.) Using the results of a computer 
calculation, we show in Section 5 that it is also not doubly transitive when q = 73. 
(This section is independent of Sections 3-4.) Thus only the cases q = 7' (r = 5, 7, 
9, * * * ) remain open. 

The triple systems of this section have been characterized by Luneburg [8] and 
Kantor [7]. Their work is discussed by Dembowski [3, pp. 96-99]. The description 
which was given above is on a more elementary level, starting from somewhat special 
assumptions. 

I have not been able to find who first studied the triple system of order p 7 
(mod 12) considered here. Dembowski [3, p. 98], ascribes it to Netto [9], but this is 
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incorrect, since the system discussed by Netto is different. Netto's system also appears 

in his book [10, pp. 220-221]; in a note to the second edition, pp. 329-331, Th. 

Skolem introduces a class of systems including both Netto's and the one discussed here. 

However, Skolem makes no mention of the special properties of the present system, so 

it hardly can be ascribed to him. The first appearance of the system in print may be in 

a problem in Carmichael [1, p. 436]. 

2. Linkages. A useful tool in studying isomorphisms and automorphisms of 

triple systems is the type of linkage between two elements. Let S be any triple sys- 

tem, and let a and b be two elements of S. They determine a triple (a, b, c), 

which we call the key triple of the linkage. All of the rest of the elements fall into 

cycles of the form (c1, C2, * *, c21), where 1 > 2 and (a, cl, C2), (b, C2, C3), 

(a, C3, C4), ... , (a, c2111, c21), (b, c21, C1) are all triples. Thus any cycle has an 

even length not less than 4. 
Such linkages were used by Reiss [111 in the special case where all the elements 

not in the key triple form a single cycle. He constructed triple systems of all possible 

orders in which a suitable pair of elements are linked in this way. Linkages as a tool 

in studying isomorphisms seem to have been introduced by Cole, Cummings, and White 

[2]. Details are given in [12, Parts 3-5]. This method was used again by Hall and 

Swift [6]. 
If we want more information than is furnished by the cycles described above, we 

can compute the cross-links joining pairs of elements in the same or different cycles 

which form a triple with the third element c of the key triple. If S is mapped iso- 

morphically onto another system S', then a and b must be mapped onto elements 

a' and b' such that the linkage between a' and b' has the same structure as the 

linkage between a and b. 
In the linkage between a and b, the pairs of consecutive elements of a cycle 

form triples alternately with a and with b. The linkage between b and a is the 

same, except for the interchange of the first and second pairings. This difference may, 

however, be enough to make it possible to show that there can be no automorphism 

interchanging a and b. 
In general, the number and lengths of the cycles for the linkage between a and 

b in S will depend on a and b. However, this will not be the case if the automor- 

phism group is doubly transitive, or even transitive on unordered pairs. Now in the two 

known kinds of triple systems with doubly transitive automorphism groups, the systems 

of orders 2r - 1 and 3r, the cycles are all of the same length. Consider the systems 

as based on the field of 2r elements with 0 deleted, or on the field of 3r elements. 

For the system of order 2r - 1, the key triple is (a, b, a + b), and every cycle has the 

form (x, x + a, x + a + b, x + b). For the system of order 3 , the key triple is 

(a, b, - a- b), and every cyclehasthe form (x, -x - a,x +a - b, -x + a + b, 
x - a + b, - x - b). Furthermore, in both cases, every element is cross-linked to the 
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opposite element of the same cycle. The key triple with each cycle forms a subsystem 

of order 7 or 9, respectively. 
For the triple systems of order q 7 (mod 12) discussed in Section 1, we have 

a new situation. The linkage structure for each q is unique, except for the possible 

interchange of the two pairings of consecutive elements of a cycle, but it varies with q 

in a manner which is not easily predictable. Thus the number and lengths of the cycles 

for each q seems an interesting object of study. They may be computed taking a = 0 

and b = 1. This was done for q < 1000 during March and April 1974 using the 

CDC 6400 at the Computer Center of the University of California, Berkeley. The main 

program covered primes p < 1000. A special program was written for the only other 

case, q = 343. 
In the computer programs, the numerically smaller value of co was chosen. The 

key triple is (0, 1, co + 1). The remaining elements fall into cycles, and these were 

computed. In addition, the computer printed out the number to which each element 

of a cycle was cross-linked, and the name of the cycle to which this number belonged. 

It is impossible to reproduce all this information here, although it is necessary to refer 

to it at times. The numbers of cycles of various lengths are given in Table 1. The 

arrangement is as follows: For each value of q, the total number of cycles is given, 
then the number of cycles of lengths 6, 12, 18, 24, 30, and then the lengths of all 

other cycles. 
Here are some interesting facts about the lengths of the cycles for q < 1000 

which may be read from Table 1. (1) There is a cycle of length 4 if and only if q 
7 (mod 24). (2) The number of other cycles is even. (3) The average length of the 

cycles is less than 12, but seems to be approaching 12. (4) In the prime cases, the 

cycles all have lengths divisible by 6 except for one congruent to 4 mod 6 (40 cases) 
or two congruent to 2 mod 6 (4 cases). For q = 343, there is a cycle of length 4 

and three of length 14 besides the cycles whose lengths are divisible by 6. 

A general proof of (1) is given in Sections 7-8. The statements (2) and (3) lead 

to obvious conjectures. Finally, with regard to (4), it is clear that there is a strong 

preference for cycles whose lengths are divisible by 6, but it is not clear whether we 

should expect the number of exceptions to remain bounded. 

We shall also be interested in determining the subsystems of the triple systems 

considered. In general, if a triple system has n elements and a proper subsystem has 

s elements, then n > 2s + 1. Otherwise, there would not be enough elements to com- 

plete the triples determined by elements of the subsystem and a fixed element not in 

the subsystem. 
A subsystem of the given system of order q which contains 0 and 1 will 

consist of the key triple and a certain number of cycles. Furthermore, all cycles may 
be divided into equivalence classes of cycles which are connected by cross-links. There 

may be a number of minor classes, with fewer than q/2 elements each, and perhaps one 

major class, with more than q/2 elements. A proper subsystem containing 0 and 1 

must consist of the key triple and some minor classes. 
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TABLE 1 

q Total Cycles of Length Lengths of Other Cycles 
Cycles 6 12 18 24 30 

7 1 0 0 0 0 0 4 

19 2 1 0 0 0 0 10 

31 3 1 0 1 0 0 4 

43 4 2 1 0 0 0 16 

67 6 4 0 0 1 0 16 

79 7 5 0 0 0 0 4, 42 

103 9 5 1 1 0 0 4, 36 

127 11 8 1 0 0 0 4, 60 

139 14 9 2 0 1 0 14, 20 

151 13 10 1 0 0 0 4, 72 

163 14 9 3 0 0 1 40 

199 17 11 2 2 0 0 4, 66 

211 18 14 0 1 0 0 28, 36, 42 

223 21 14 3 2 0 0 4, 60 

271 23 16 1 2 0 2 4, 60 

283 24 19 0 2 0 0 10, 42, 78 

307 28 18 4 2 0 1 10, 36, 36 

331 28 19 4 1 2 0 34, 66 

343 33 21 2 3 0 3 4, 14, 14, 14 

367 33 23 5 1 1 1 4, 90 

379 34 22 6 0 3 1 16, 54 

439 41 27 6 2 2 2 4, 54 

463 41 28 5 0 1 3 4, 36, 36, 42 

487 45 32 7 2 1 0 4, 42, 102 

499 44 30 6 2 1 0 22, 36, 36, 42, 48 

523 48 32 6 4 1 1 14, 14, 42, 60 

547 50 31 9 3 2 3 16, 42 

571 50 33 8 3 2 1 28, 36, 78 

607 53 40 6 1 0 2 4, 36, 42, 132 

619 56 41 4 2 2 1 20, 20, 36,42,42,48 

631 57 38 8 2 4 1 4, 36, 48, 54 

643 58 39 7 6 0 2 10, 36, 42, 66 

691 62 43 9 2 3 0 36, 42,42,46,48 

727 63 42 7 3 3 2 4, 36, 36, 36, 36, 54 

739 64 46 4 5 3 2 16, 36, 66, 72 

751 67 45 6 7 2 2 4, 36, 42, 42, 48 

787 72 47 12 4 4 0 14, 20, 36, 54, 66 

811 72 50 12 1 2 3 36, 54, 58, 60 

823 73 52 9 4 0 3 4, 48, 48, 66, 72 

859 74 54 9 1 2 2 10, 42, 42, 48, 72, 84 

883 76 55 9 3 1 3 36,42,42,46, 108 

907 78 56 7 5 2 1 36, 36, 36, 40, 48, 54, 66 

919 81 56 10 4 6 1 4, 42,42,126 

967 85 61 12 3 3 0 4, 36, 42, 60, 66, 120 

991 87 59 10 4 5 3 4, 36, 42,42,48,60 
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The classes of cycles which are cross-linked to each other were computed. For 
each prime p < 1000, there is a major class, and it contains the longest cycle. On the 
other hand, for q = 343, all classes are minor. The lengths of the cycles in all of the 
minor classes are printed in Table 2. The notation 4 + 3 * 6 means that there is a 
class consisting of a cycle of length 4 and three cycles of length 6. The notation 
2(3 * 6) means that there are two different classes each consisting of three cycles of 
length 6. If the totality of minor classes has the form j(3 * 6), with j = 0, 1, 2, 3, 
then the corresponding value of q is listed in the appropriate line in Table 2a. The 
remaining values of q appear in Table 2b, with the minor classes listed. 

TABLE 2a 

Minor classes Values of q 

None 7, 19, 31, 43, 67, 103, 127, 151, 163, 199, 211, 271, 283, 331 

3 6 139, 223, 307, 379, 463, 499, 571, 739, 883 

2(3 6) 439, 487, 523, 547, 619, 631, 643, 751, 823, 859, 907, 991 

3(3 6) 691, 787,5811, 919, 967 

TABLE 2b 

q List of Minor Classes 

79 4+3 6 

343 4, 3 * 6 + 2 * 12, 3 * 14, 3(4 * 6 + 18), 3(2 * 6 + 30) 

367 2(3 * 6), 6 6 + 12 + 18 + 24 

607 2(3 * 6), 11 6 + 2 * 12 + 30 + 42 

727 3 6,3 6+18 

3. Automorphisms of Systems of Order p < 1000. For primes p with 7 <p 
< 1000, it was shown from the computer output that the system of order p has no 
automorphisms but the prescribed ones, so that the automorphism group has order 
p(p - 1)/2. Subsequently, a general proof was found, depending on some published re- 
sults, and this is presented in Sections 7-9. The reader may proceed directly to this, 
if he wishes. However, it still seems worthwhile to describe how the result was obtained 
for p < 1000 by computation. 

Consider an automorphism a which takes 0 and 1 into 0 and 1 in either 
order. As described below, I checked that a leaves the longest cycle fixed, that is, 
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leaves each element of the cycle fixed. (For p = 307, there are two cycles of maxi- 
mum length, and both were found to be fixed.) It then follows that a leaves 0 and 
1 fixed, so that the automorphism group is not doubly transitive. The set of fixed 
points of a forms a subsystem including the key triple and a major class, the class of 
linked cycles containing the longest cycle. It follows that a is the identity, hence the 
order of the automorphism group is p(p - 1)/2. 

If a takes {0, 1} into {0, 1}, then it must take each cycle into some cycle of 
the same length. If there is no other cycle of the same length as a given cycle, then the 
given cycle must be mapped onto itself. This mapping, if not the identity, must be 
either a rotation or a reflection. 

What I did was to mark the elements of the longest cycle which are cross-linked 
to other elements of the same cycle. In most cases, the pattern of marked elements 
was found not to have symmetry under either rotation or reflection. For example, when 
p = 43, the key triple is (0, 1, 7), and the longest cycle is 

(4, 28, 11, *34, 18, 21, 10, *27, *17, 33, 24, 39, 9, 20, *16, 26), 

where the elements linked to others in the same cycle are starred. Indeed, (7, 17, 34) 
and (7, 16, 27) are triples. The pattern has no symmetry. Hence a must keep the 
cycle fixed. In the case p = 307, both maximum cycles lack symmetry, and they also 
have different self-linkage patterns from each other, so both are fixed. 

The only values of p with 7 < p < 1000 for which there is any symmetry are 
19, 31, 439, 463, 547, 907. The operation preserving the pattern is reflection for 
p = 19, 31, 439, 547, and a half-turn (rotation through half the length of the cycle) 
for p = 463, 907. However, except for p = 19, there are cases where pairs of sym- 
metric elements are cross-linked to cycles of different lengths, so a must keep the 
longest cycle fixed. 

Only for p = 19 is a more elaborate argument needed. Here the key triple is 
(0, 1, 8), and the linkage consists of the two cycles 

(2, *5, 14, *16, 10, 6, *3, 17, 15, *9), (4, 13, 12, 11, 7, 18). 

Here 3 and 5 are cross-linked, and 9 and 16 are cross-linked. The pattern is 
symmetric to the diameter joining 3 and 5. Multiplying the key triple (0, 1, 8) by 
16 yields (0, 16, 14). Adding constants to both triples yields (13, 14, 2) and 
(15, 12, 10). But 2 and 14 are interchanged in the reflection, as are 10 and 15. 
Hence 12 and 13 must be fixed, so the short cycle is fixed. This holds the unstarred ele- 
ments of the long cycle fixed, and prevents the reflection. 

4. Subsystems of Systems of Order p < 1000. We shall show that none of the 
systems of prime order p < 1000 have any proper subsystems of order greater than 3. 
It is sufficient to consider subsystems containing 0 and 1. Such a subsystem will con- 
sist of the key triple and a certain number of minor classes, as given in Table 2. We 
might exclude the existence of subsystems by computing additional triples, but instead 
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we shall attempt to do so using only the information in Table 2, which is based solely 
on triples containing 0, 1, or co + 1. 

Suppose that there are subsystems of order k, where 3 < k < p. We will then 

have a design with these subsystems as blocks. Indeed, if there are X such subsystems 

containing 0 and 1, then there will be X subsystems containing any pair of elements. 

In other words, each pair of elements is contained in just X blocks. In the usual nota- 

tions for designs, we have a design with v = p and the values of k and X as above. 

If b is the total number of blocks, and r the number of blocks in which each element 

occurs, then simple counting gives 

bk=pr, r(k-1)= X(p-1). 

Compare Hall [5, p. 1011. (The use of r here is different than elsewhere in this 

paper.) Since p 3 (mod 4), the second equation shows that we cannot have k 1 

(mod 4) and X odd. Also, the first equation yields kIr, hence we have 
k(k - 1)1 X(p - 1). If p < 1000, we cannot have k > 33 and X = 1. 

Let C, denote the class of primes for which the only minor classes are j sets 
of three cross-linked cycles of length 6. These correspond to the various lines in Table 
2a. For primes of class C0, all cycles are linked, hence there is certainly no subsystem. 
For primes of class C1, the only possibility is k = 21 and X = 1, and this is excluded 
by the preceding paragraph. For the classes C2 or C3, we might have 

k=21, X= 1,2,3; k=39, X= 1,2,3; k=57, X= 1. 

We cannot have k = 39 and X > 1, since two subsystems of order 39 containing 
0 and 1 would have to intersect in a system of order 21, which is impossible since 
21 > 39/2. The cases k = 39, 57 and X = 1 are excluded since k > 33. Finally, 
the cases k = 21 and X = 1, 3 are excluded since k 1 (mod 4). So we are left 

with the case k = 21, X = 2. Here we must have 21 20I2(p - 1), hence p 1 

(mod 210). With p 7 (mod 12), this yields p 211 (mod 420), hence p = 

211, 631. But 211 is of class C0, so only 631 remains. This will be reserved for 

later consideration. 
Now look at the four primes in Table 2b. For p = 79, we would have k = 25 

and X = 1, which is excluded since k 1 (mod 4). In the cases p = 367, 607, 727, 

no subsystem can be formed using only the sets of three linked cycles of length 6, for 

the same reasons as above. A subsystem formed using the remaining class of linked cycles, 

with or without some of these sets, is impossible since k > 33 and X = 1. 

Thus on the basis of Table 2, we were able to show that there could be no sub- 

systems, except possibly for p = 631. A design with k = 21 and X = 2 is not 

excluded by the basic equations used. We would have r = 63 and b = 1893. I do 

not know whether such a design exists or not. In any case, we can exclude the exis- 

tence of a subsystem for p = 631 by computing an additional triple. The key triple 
is (0, 1, 44), and three of the linked cycles of length 6 are given by the computer out- 
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put as 
(7, 330, 367, 625, 324, 374), (8, 352, 301, 308, 51, 331), 

(37, 302, 309, 345, 624, 323). 

These do not form a subsystem of order 21, since, for example, (323, 330, 22) is a 
triple determined by two of its elements and containing a new element. Thus we can- 

not have X = 2, and hence there is no subsystem. 

5. The System of Order 343. There is only one admissible value of q < 1000 
which is not prime, namely q = 343. The required field is obtained by adjoining to 
the 7-element field a root 0 of an irreducible cubic. We may assume that 03 = 2. 
The field elements then have the form a02 + bO + c, with the coefficients taken 
mod 7. If we identify this element with the point having coordinates x = a, y = b 
z = c, then the field is a 3-dimensional affine space over the 7-element field. As 

noted in Section 1, the elements of a triple are collinear. Thus each of the 

(343 - 342)/(7 - 6) = 2793 lines of the space is a triple system of order 7, and each 
of the (343 - 342 - 336)/(49 - 48 * 42) = 399 planes of the space is a triple system 
of order 49. 

In the computer program, we took X = 2. The key triple is (0, 1, 3), and 

there is a cycle of length 4, namely (2, 6, 5, 4). Together, these form a triple system 
of order 7 consisting of the seven integers, which form the line x = 0, y = 0. From 

Table 2b, we see that all of the other cycles fall into eight classes each having 42 ele- 

ments. With the key triple and the cycle of length 4, these will form the eight planes 
through the line x = 0, y = 0. Any subsystem containing 0 and 1 includes the key 

triple. If there are more than 3 elements, then it must also include the cycle of length 
4, since otherwise its intersection with a suitable plane would consist of 45 points in 

the plane. Since any subsystem with more than 3 elements containing 0 and 1 in- 

cludes the complete line through 0 and 1, it follows that any subsystem with more 

than 3 elements contains the complete line through any two of its points, and is there- 

fore a linear subspace, with 7 or 49 elements, unless it is the whole space. These 

subsystems will be studied in Section 6. 
There is a field automorphism which takes 0 into 20. Using it permutes the 

elements a02 + bO + c, 4aG2 + 2bO + c, 2a02 + 4b0 + c cyclically. The key triple 
and the 4-term cycle are fixed. Examination of tnie computer output shows that, ex- 
cept for the two 12-term cycles, all cycles are permuted cyclically in sets of three. The 
automorphism moves each of the 12-term cycles 4 spaces, that is, one-third of a turn. 

If we mark the elements of the longest cycles, the three cycles of length 30, which 
are cross-linked to other elements of the same cycle, we must obtain the same pattern 
in all three cases. Examination of the computer output shows that this pattern has no 
symmetry under rotation or reflection. Hence any automorphism which takes {0, 1} 
into itself and takes one of these cycles into itself must leave the cycle fixed and hence 
also leave 0 and 1 fixed. But every automorphism which takes {0, 1} into itself is 
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the product of a field automorphism and one of these automorphisms, and hence leaves 
0 and 1 fixed. Thus we cannot interchange 0 and 1, and hence can never inter- 
change a pair of elements. The automorphism group is not doubly transitive. 

Now consider an automorphsim a which leaves 0, 1, and a cycle of length 30 
fixed. Then a2 must leave all three cycles of length 30 fixed. Since there is no 
proper subsystem of order greater than 49, every point must be fixed, and U2 is the 
identity. But a cannot interchange two elements, hence a is also the identity. Thus 
the only automorphisms which take {0, 1} into itself are the field automorphisms. 
Together with the linear automorphisms prescribed in Section 1, they generate the entire 
automorphism group, which therefore has order rq(q - 1)/2 = 3 * 343 * 171 = 

175959. 

6. Subsystems of the System of Order 343. It was shown in Section 5 that the 
only proper subsystems of order greater than 3 are the linear subspaces, which form 
systems of orders 7 and 49. We want to study the properties of these subsystems. 

We have already noted that the line x = 0, y = 0 is made up of the key triple 
and a cycle of length 4, and that the rest of each of the planes through this line is 
made up of a class of linked cycles. Examination of the computer output shows that 
the type is 3 * 6 + 2 12 for the plane x = 0, 3 * 14 for the plane y = 0, 4 * 6 
+ 18 for the planes y = 3x, y = 5x, y = 6x, and 2 * 6 + 30 for the planes y = x, 
y = 2x, y = 4x. The field automorphisms take the first two planes into themselves, and 
permute each of the sets of three planes cyclically. 

Putting P = (x, y, z) = x02 + yO + z, we see that the automorphisms Pg 
aP?+ with a = 1,2,4 and f=0, 1,2,3,4,5,6 taketheline x=0,y =0 
into itself, and also take each plane through this line into itself. We can take {0, 1} 
into any pair of integers, that is, into any pair of points on the line x = 0, y = 0. 
These automorphisms will convert the linkage between 0 and 1 into the linkage of 
an arbitrary pair of integers. The cycles in each plane through x = 0, y = 0 will be 
converted into cycles in the same plane. Thus the cycle structure of each plane through 
the line x = 0, y = 0 will be the same, no matter what pair of integers are linked. 

Since any line can be taken into any other line, we see that the eight planes 
through any line will also have these four types of cycle structure with frequencies 1, 
1, 3, 3. The linkage type of each plane will be the same, no matter what pair of points 
on the line are linked. 

Any two subsystems of order 7 are of course isomorphic, and indeed, we can take 
any one into any other by means of an automorphism of the system of order 343. We 
shall now prove a similar result for the subsystems of order 49. In the first place, we 
can take two points in any given plane into 0 and 1, and hence take the plane into a 
plane through the line x = 0, y = 0. It will be sufficient to show that each of these 
planes can be taken into the plane x = 0. The seven other planes have the form y = 

tx (t = 0, 1, 2, 3, 4, 5, 6). 
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Now multiplication by ? (0 - t) will be an automorphism, where the sign is 
chosen to make the factor a square. Since 03 = 2, we have 

(0 - t) (a02 + bO + c) = (b - ta)02 + (c - tb)6 + (2a - tc). 

Thus the point x = a, y = b, z = c goes into the point 

x=+(b-ta), y=+(c-tb), z=+(2a-tc). 

Hence the plane y = tx is mapped onto the plane x = 0. In particular, the point 
x = 0, y = 0, z = c is mapped onto the point x = 0, y = ?c Z = T tc. Thus the 

line x = 0, y = 0 is mapped onto the line x = 0, z = - ty. As the various planes 

through the line x = 0, y = 0 go into the plane x = 0, the line goes into the various 
lines through the origin in the plane x = 0. 

It follows that the cycle structure of the plane x = 0 with respect to the eight 
lines through the origin, and more generally the cycle structure of any plane with re- 
spect to the eight lines in the plane through any point, are of the four types with 
frequencies 1, 1, 3, 3. The cycle structure of the plane depends only on the line in 
which the linked points are chosen, and not on the choice of points within the line. In- 
deed, we see that this structure depends only on the direction of the line. 

The 21 automorphisms Pa = aP + ,B mentioned above take the line x = 0, 
y = 0 into itself. The three field automorphisms leave every point on the line fixed. 

Altogether, there are exactly 63 automorphisms of the space which take a line into it- 

self, but they induce only 21 automorphisms of the line. This is a proper subgroup of 
the whole group of 168 automorphisms for a system of order 7. 

In contrast to this, it will turn out that there are 441 automorphisms of the space 
which take a plane into itself, that they furnish 441 different automorphisms of the 
plane, and that these constitute the full automorphism group for the system of order 49 
in the plane. 

It will be convenient to consider the plane y = 0. All of the 63 automorphisms 
of the space which take the line x = 0, y = 0 into itself also take the plane y = 0 
into itself. Any other automorphism of the space which takes the plane y = 0 into 
itself must take the line x = 0, y = 0 into another line with respect to which the plane 
is of type 3 * 14, that is, into a parallel line. Thus there are just 63 * 7 = 441 auto- 

morphists of the space which are also automorphisms of the plane y = 0. 
Are there any additional automorphisms of the plane? It is still true that the line 

x = 0, y = 0 must go into a parallel line. The 441 automorphisms above produce 
each possible image of {0, 1} three times. The question whether there are any addi- 
tional automorphisms reduces to whether there are any automorphisms other than the 
field automorphisms which take {O, 1} into itself. 

The part of the plane y = 0 not on the line x = 0, y = 0 consists of three 

cycles of length 14, which are permuted by the field automorphisms. It will be suf- 
ficient to show that no automorphism but the identity can take {0, 1} into itself and 
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one of these cycles into itself. The computer output shows that the linkage pattern of 

each cycle is 

ABA * A * AA * B * BBB, 

where the asterisk denotes an element cross-linked to another element of the same cycle, 

and the letters denote links to the other two cycles. The self-linkage alone would per- 

mit a reflection, but the linkage to the other two cycles shows that this is impossible. 

Thus if an automorphism takes a cycle into itself, the cycle must be fixed. The auto- 

morphism then has more than 7 fixed points, and is therefore the identity. 

7. The Lengths of Cycles. The remaining sections are independent of Sections 

3-6. In this section, we shall give some general results about the lengths of cycles. 

These will be used in Section 8 to determine the cycles of lengths 4 and 6. 

Starting from the key triple (0, 1, X + 1) = (0, 1, - c2), we obtain the triple 

(0, a, - c2a) when x(a) = 1. Subtracting 1 from each element of the key triple 

yields (0, - 1, c), hence (0, a, - wa) is a triple when x(a) =-1. 

Now suppose that (ao, bo, a1, b1, a, a1., bl 1) is a cycle in the linkage of 

0 and 1. Then 

-_ 2ak if X(ak) = 1, 

bk = 
b wcak if X(ak) =-1, 

and 

( 2(bk 
- 1) if x(bk 

- 1) = 1, 
ak+l 1 

k 1(bk - 1) if x(bk - 1) =-. 

It follows that 

X(bk) X(ak), X(ak+l - 1) =- x(bk - 1). 

Combining the functions expressing ak+ 1 in terms of bk and bk in terms of ak, 

we find that the functions expressing ak+1 in terms of ak are 

(??) cx - c, (+?-) x - w 2 (-+) x - , (--) 2x - 2 

when the characters X(ak) and X(bk - 1) have the indicated signs. 

Suppose that the character sequence 

X(ao), X(bo -1), x(al), x(bl -1), * * * , x(al_1), x(bl- 1- 1) 

is given. We see by induction that ak = xkao + Pk& + Pk, where Xk, Pk' Pk are 

certain integers depending on the first 2k characters. In order to make a, 
= ao, we 

must choose ao so that 

ao = X la_ + pi + p1. 
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We shall call this the closing equation. If X1- 0 (mod 3), then the closing equation 
will hold for all values of ao or for no values of ao. For other values of X1, the 
closing equation will hold for a unique value of ao. Since (1 - co)(1 - co2) = 3, we 
see that ao will have the form (x co + y)/3, where x and y are integers. 

For a given character sequence, the closing equation is satisfied by no, one, or all 
values of ao. In the first case, we say that the cycle is unclosable. In the remaining 
cases, we may speak of a special cycle or a general cycle belonging to the character se- 
quence. In these cases, the cycle computed from the special ao or from a general ao 
using the given characters will close after 21 steps. However, there is no guarantee that 
the cycle thus computed will lead to the prescribed values of X(ak) and X(bk -1). 

If this is the case, then we will have X(bk) = - X(ak), X(ak+ 1 - 1) = 

- x(bk - 1), and X(ao - 1) =-x(bl- 1 - 1). Hence all elements of the character 

matrix 

/ x(aO) x(bo) * * * X(a,- ) X(bl_ 1 ) 

(x(ao-1) x(bo-1) ... X(a1- -1) x(bl-1) 

will have known values. Conversely, from the character matrix, we can write the 
character sequence for the cycle starting at any point. If we start from some bk, then 
the cycle must be written in reverse order, so that the first two elements will occur in 
a triple with 0. For example, if we start at the last term, b,_ 1, then the character 
sequence will be 

X(bl_ 1), X(a1- 1 x(bl), x(al - 1), x(bo), x(ao - 1). 

Every character sequence formed from the character matrix by starting at any point in 
the cycle will be obtained from the original sequence or from this sequence by rotating 
an even number of places. All of these will be considered equivalent. Thus all 
character sequences will fall into equivalence classes, which usually will have 21 elements. 
It will be sufficient to examine one character sequence in each equivalence class. 

A general restriction on possible character sequences may be noted. From the 
formulas for ak + 1 in terms of ak, we see that 

X(ak+l) = X(ak - 1) if X(ak) = x(bk - 1). 

Applying this equation to the character sequence for the cycle taken in reverse order, 
we find that 

X(bk-1) x(bk - 1) if x(bk) = X(ak - 1)- 

Using the fact that X(ak-1) = - X(bk1 - 1), X(bk1) = - X(ak-1), and x(bk) 

= - X(ak), these two equations yield 

X(ak+l) = - X(bk-1 - 1) if X(ak) = x(bk - 1), 

X(ak-1) = - x(bk - 1) if X(ak) = x(bkl - 1). 
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Thus if any two terms of the character sequence are equal, then the terms on either 
side of them are not equal to each other. 

8. Cycles of Lengths 4 and 6. We shall now apply the method of Section 7 for 
small values of 1. The case 1 = 1 (cycles of length 2) is of course impossible, but it 
is instructive to examine what the general method leads to in this case. The closing 
equation cannot be satisfied in the cases of the character sequences (?-) and (-+). 
The remaining cases, (++) and (--), are equivalent. In the case (?+), we find 

ao = (- + 1)/3 and bo=( ? + 2)/3. Hence bo-1 =- ao, so X(bo-1)= 
- X(ao), contrary to hypothesis. 

Now look at the case 1 = 2 (cycles of length 4). The 16 possible functions ex- 
pressing a2 in terms of ao are given in the following table. 

(??) (?-) (-?) (- 

'X- co X - .2 X-Co co 2x _ a2 

(++) CoX - X 2x + 1 cox + 1 cx - 2w x + X 

(+-) x - co2 Cox + co2 x-22co2 x + 1 o2X + 1 

(-+) X - X cx +?1 X+ 1 x - 2co 2X + Co 

(--) co2x - co2 x + co2 co2x-2co2 co2x +1 Cox + 1 

The functions at the left express al in terms of ao, while those at the top express 

Z2 in terms of a1. The corresponding characters are given in each case. Each com- 
posite function, obtained by first applying the function at the left and then the one at 
the top, expresses a2 in terms of ao. 

We see that in 6 of the 16 cases, the closing equation is impossible, and that in 
each of the other 10 cases, it has a unique solution. Thus we have 6 unclosable cycles 
and 10 special cycles. However, the two special cycles corresponding to entries on the 

main diagonal are in fact impossible, because the first and last halves of the character 

sequence are alike, so we would have al = ao. We are left with the 8 entries on neither 
diagonal, which give rise to special cycles. These cases fall into two equivalence classes, 
which may be computed using character matrices. Representative character sequences 
for the two classes are (+++-) and (-+++). In both cases, the starting value ao 
must be a solution of the equation x = xx + 1, hence ao = (co + 2)/3. 

As noted in Section 1, we may assume that co was chosen so that x(co - 1) = 

1, hence also X(c + 2) = 1. With this choice of co, we see that x(ao) = - 1, so 
that only the sequence (-+??) can be used. For this sequence, we find that 

co + 2 -co + -2co + 2 2co + 4 
ao = I bo3 al-= - b= = 

Hence 3(bo-1) = 1 and3 3 1 

Hlence X(bo - 1) = 1 and X(b1 - 1) = 1, where in the latter case we use the fact 
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that (c - 1)(2c + 1) = 3co2. Finally, X(a,) = x(2), so that all the conditions will 

be satisfied if x(2) = 1. Thus there is a unique cycle of length 4 when x(2) = 1, 
that is, when q 7 (mod 24), but there is no such cycle when x(2) =-1, that is, 

when q 19 (mod 24). Thus the behaviour observed in the computer output for 

q < 1000 has been verified in general. 
We now turn to the case I = 3 (cycles of length 6). Here we must leave most 

of the computation to the reader. The first step is to form a table similar to that 

used for I = 2, but now having 16 rows and 4 columns. The arguments at the left 

are the entries in the body of the previous table, with the appropriate character se- 
quences, and the arguments at the top are as before. When the table is filled in, we 

find 8 positions with the entry x, which lead to general cycles, 14 positions with 
entries of the form x + c, where c $ 0, which yield unclosable cycles, and 42 other 

cases, which give special cycles. The last 42 positions fall into 7 equivalence classes, 
which may be found using character matrices. When the special cycles are computed 
in 7 representative cases, all are found to contain elements of the key triple. Thus 
none of the special cycles are in fact possible. 

Two equivalent general cycles correspond to character sequences (++++++) 
and (------). They are impossible, since they contradict the restriction found at 
the end of Section 7. The remaining six general cycles are equivalent to each other. 
We select the character sequence (+++---) to use. Starting with an arbitrary ele- 
ment a, we obtain the cycle 

ao =a, bo = - a, al = ca - , b=- a + 1, 

a2 =coa+ 1, b2 =-c2a- c. 

It is easily seen that all of the characters will have the prescribed values if and only if 

x(a) = 1, x(a -1) = 1, x(a + w) = -1, X(a + 2) =-_1. 

Thus all cycles of length 6 are obtained by starting with values of a satisfying these con- 

ditions. The chance that an arbitrary value of a will satisfy the conditions appears to be 
nearly 1/16, which gives an estimate q/1 6 for the number of cycles of length 6. This is 
in good agreement with the actual number as given in Table 1. 

9. Subsystems of Orders 7 and 9. A subsystem of order 7 containing 0 and 1 must 
consist of the key triple and a cycle of length 4. Furthermore, the opposite elements of 
the cycle must clearly be cross-linked. There is no cycle of length 4 unless p- 7; (mod 24), 
and in that case there is a unique cycle, which was determined in Section 8. For this 
cycle, bo = (- X + 1)/3 and b1 = bo + X + 1. Hence adding b0 to the key triple 

(0, 1, X + 1) yields the triple (bo, bo + 1, bl). Thus bo and b1 are cross-linked only 
if bo + 1 = co + 1, or bo = co. Using the value of bo0 the last equation reduces to 4 = 

1. Cubing yields 64 = 1 and hence p = 7. Hence there can be no subsystem of order 7 
unless q = 7'. 
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A subsystem of order 9 containing 0 and 1 must consist of the key triple and a cycle 
of length 6. The only triple system of order 9 is the affine plane over the 3-element field. 
Hence, as noted in Section 2, each element of the cycle must be cross-linked to the oppo- 
site element. We determined the most general cycle of length 6 in Section 8. It will be 

sufficient to recall two things: The element opposite to the starting element a is - a + 1, 

and a was subject to various conditions, including X(a + c2) -1. Subtracting 1 from 
the key triple gives (-1, 0, c), multiplying by - a - 2 yields (a + c,2, 0,- oa -1), 

and adding X + 1 gives the triple (a, X + 1, - wa + o). Thus a is cross-linked to 

-wa + X = (- a + 1) * - a + 1, and so the opposite elements, a and - a + 1, are 
not cross-linked. Hence there can be no subsystem of order 9. 

Now by Hall [4, Theorem 4.1 ], a triple system whose automorphism group is 

doubly transitive must have a subsystem of order 7 or 9. It follows that, for the sys- 
tems considered here, the automorphism group cannot be doubly transitive, except 
possibly for q = 7". (This use of Hall's theorem was suggested to me by William M. 
Kantor in a letter written in 1971.) For q = 7, the group is in fact doubly transitive. 
On the other hand, we showed in Section 5 that the group is not doubly transitive for 
q = 73. It seems unlikely that it is doubly transitive for any q > 7. 

Whenever the automorphism group is not doubly transitive, it follows from Kan- 
tor [7, Proposition 6.1], that is must be generated by the linear automorphisms pre- 
scribed in Section 1 and the field automorphisms, and hence has order rq(q - 1)/2 if 
q = pr. This result is thus proved for q 0 7" and also for q = 73. 

Postscript (added August 1974). It can also be shown that the automorphism 
group is not doubly transitive when q = 7r with r > 1. The following proof is a 
simplified version of one suggested to me by Kantor after seeing the above manuscript. 
The system of order 7r is based on an r-dimensional affine space over the 7-element 

field, and the only subsystems of order 7 are the lines. Hence any automorphism of the 

triple system takes lines into lines, and is also an automorphism of the affine geometry. 
But in an automorphism of the affine geometry, the mapping of a line is determined as 
soon as the images of two points are known. Hence any automorphism of the triple 
system which interchanges 0 and 1 must take each integer z into 1 - z. This 

leads to a contradiction, since the key triple (0, 1, 3) is not preserved. 
One additional result particularly deserves mention. Using the computer, it was 

found that the plane sections of the system of order 75 furnish two types of sub- 

systems of order 49. Of the 400 planes through a line, 360 are isomorphic to the plane 
sections of the system of order 343, which were studied in Section 6, and 40 are of a 

new type. The new type of plane contains a subsystem of order 21. This is the first 

example of a subsystem other than the obvious ones in any of our systems. It still 

seems likely that none of the systems of prime order p have any subsystems of order 

k with 3 < k < p. This was verified in Section 4 for p < 1000, and the general 
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proof for the crucial cases k = 7 and k = 9 given in Section 9 has now been extend- 

ed to k = 13 and k = 15. 
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